G.M. Historias
Dados y Monedas
INTRODUCCIÓN
    <<Índice     >>Conjunto de sucesos 

  La teoría de las probabilidades es, como mucho, simple sentido común reducido a cálculo.
Pierre Simón Laplace

La historia de la probabilidad comienza en el siglo XVII cuando Fermat y Pascal tratan de resolver algunos problemas relacionados con los juegos de azar.
Aunque algunos marcan sus inicios cuando Cardano (jugador donde los haya) escribió sobre 1520 El Libro de los Juegos de Azar (aunque no fué publicado hasta más de un siglo después, sobre 1660) no es hasta dicha fecha que comienza a elaborarse una teoría aceptable sobre los juegos.

Diversos restos arqueológicos ponen de manifiesto que es desde muy antiguo la fascinación que el hombre sintió por el juego. Astrágalos, dados, cartas, etc. es un ejemplo de ello y, en la actualidad, ruletas, máquinas tragaperras, loterías, quinielas, etc, etc, nos indican que dicha fascinación continúa.

Christian Huygens conoció la correspondencia entre Blaise Pascal y Pierre Fermat suscitada por el caballero De Méré (ver problema (#19) Un problema histórico) y publicó (en 1657) el primer libro sobre probabilidad: De Ratiociniis in Ludo Aleae, (Calculating in Games of Chance), un tratado sobre juegos de azar.
Durante el siglo XVIII, debido muy particularmente a la popularidad de los juegos de azar, se publicaron varios documentos de este tipo. Jakob Bernouilli (1654-1705) Ars Conjectandi (publicado en 1713 aunque escrito sobre 1690) y Auguste De Moivre (1667-1754) constribuyeron de forma importante a este desarrollo.
En 1812 Pierre Laplace publicó Théorie analytique des probabilités en el que expone un análisis matemático sobre los juegos de azar.

Desde los orígenes la principal dificultad para poder considerar la probabilidad como una rama de la matemática fue la elaboración de una teoría suficientemente precisa como para que fuese aceptada como una forma de matemática. A principios del siglo XX el matemático ruso A. Kolmogorov la definió de forma axiomática y estableció las bases para la moderna teoría de la probabilidad que en la actualidad es parte de una teoría más amplia como es la teoría de la medida.

En estas notas, entenderemos por experimento aleatorio cualquirr situación que, realizazada en las mismas condiciones, sea imposible de predecir el resultado que obtengamos.

Serán experimentos aleatorios, por ejemplo, los siguientes:

  • Lanzar un dado y considerar el resultado obtenido
  • Extraer una carta (o varias) de una baraja
  • Lanzar dos dados y hallar la suma de cada una de las caras obtenidas
  • Se lanza una moneda. Si sale cara se extrae de una urna U 1, con una determinada composición de bolas de colores, una bola y si sale cruz de extrae de una urna U 2, con otra determinada composición de bolas de colores, una bola. A continuación se considera el color de la bola extraido.
Los tres primeros son ejemplos de experimentos aleatorios simples y el último un ejemplo de experimento aleatorio compuesto

    <<Índice    >>Conjunto de sucesos

  Dados y monedas